Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 924764, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967879

RESUMO

The emergence of Neisseria gonorrhoeae strains resistant to extended-spectrum cephalosporins (ESCs) is a worldwide concern because this class of antibiotics represents the last empirical treatment option for gonorrhea. The abusive use of antimicrobials may be an essential factor for the emergence of ESC resistance in N. gonorrhoeae. Cephalosporin resistance mechanisms have not been fully clarified. In this study, we mapped mutations in the genome of N. gonorrhoeae isolates after resistance induction with cefixime and explored related metabolic pathways. Six clinical isolates with different antimicrobial susceptibility profiles and genotypes and two gonococcal reference strains (WHO F and WHO Y) were induced with increasing concentrations of cefixime. Antimicrobial susceptibility testing was performed against six antimicrobial agents before and after induction. Clinical isolates were whole-genome sequenced before and after induction, whereas reference strains were sequenced after induction only. Cefixime resistance induction was completed after 138 subcultures. Several metabolic pathways were affected by resistance induction. Five isolates showed SNPs in PBP2. The isolates M111 and M128 (ST1407 with mosaic penA-34.001) acquired one and four novel missense mutations in PBP2, respectively. These isolates exhibited the highest minimum inhibitory concentration (MIC) for cefixime among all clinical isolates. Mutations in genes contributing to ESC resistance and in other genes were also observed. Interestingly, M107 and M110 (ST338) showed no mutations in key determinants of ESC resistance despite having a 127-fold increase in the MIC of cefixime. These findings point to the existence of different mechanisms of acquisition of ESC resistance induced by cefixime exposure. Furthermore, the results reinforce the importance of the gonococcal antimicrobial resistance surveillance program in Brazil, given the changes in treatment protocols made in 2017 and the nationwide prevalence of sequence types that can develop resistance to ESC.


Assuntos
Resistência às Cefalosporinas , Gonorreia , Neisseria gonorrhoeae , Cefixima/farmacologia , Cefixima/uso terapêutico , Resistência às Cefalosporinas/genética , Gonorreia/epidemiologia , Humanos , Testes de Sensibilidade Microbiana , Neisseria gonorrhoeae/genética
2.
Lancet Respir Med ; 10(12): 1147-1159, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36029799

RESUMO

BACKGROUND: Influenza-associated pulmonary aspergillosis (IAPA) and COVID-19-associated pulmonary aspergillosis (CAPA) affect about 15% of critically ill patients with influenza or COVID-19, respectively. These viral-fungal coinfections are difficult to diagnose and are associated with increased mortality, but data on their pathophysiology are scarce. We aimed to explore the role of lung epithelial and myeloid innate immunity in patients with IAPA or CAPA. METHODS: In this observational study, we retrospectively recruited patients who had been admitted to the intensive care unit (ICU) of University Hospitals Leuven, Belgium, requiring non-invasive or invasive ventilation because of severe influenza or COVID-19, with or without aspergillosis, between Jan 1, 2011, and March 31, 2021, whose bronchoalveolar lavage samples were available at the hospital biobank. Additionally, biobanked in vivo tracheobronchial biopsy samples from patients with IAPA or CAPA and invasive Aspergillus tracheobronchitis admitted to ICUs requiring invasive ventilation between the same dates were collected from University Hospitals Leuven, Hospital Network Antwerp (Belgium), and Amiens-Picardie University Hospital (France). We did nCounter gene expression analysis of 755 genes linked to myeloid innate immunity and protein analysis of 47 cytokines, chemokines, and growth factors on the bronchoalveolar lavage samples. Gene expression data were used to infer cell fractions by use of CIBERSORTx, to perform hypergeometric enrichment pathway analysis and gene set enrichment analysis, and to calculate pathway module scores for the IL-1ß, TNF-α, type I IFN, and type II IFN (IFNγ) pathways. We did RNAScope targeting influenza virus or SARS-CoV-2 RNA and GeoMx spatial transcriptomics on the tracheobronchial biopsy samples. FINDINGS: Biobanked bronchoalveolar lavage samples were retrieved from 166 eligible patients, of whom 40 had IAPA, 52 had influenza without aspergillosis, 33 had CAPA, and 41 had COVID-19 without aspergillosis. We did nCounter gene expression analysis on bronchoalveolar lavage samples from 134 patients, protein analysis on samples from 162 patients, and both types of analysis on samples from 130 patients. We performed RNAScope and spatial transcriptomics on the tracheobronchial biopsy samples from two patients with IAPA plus invasive Aspergillus tracheobronchitis and two patients with CAPA plus invasive Aspergillus tracheobronchitis. We observed a downregulation of genes associated with antifungal effector functions in patients with IAPA and, to a lesser extent, in patients with CAPA. We found a downregulated expression of several genes encoding proteins with functions in the opsonisation, recognition, and killing of conidia in patients with IAPA versus influenza only and in patients with CAPA versus COVID-19 only. Several genes related to LC3-associated phagocytosis, autophagy, or both were differentially expressed. Patients with CAPA had significantly lower neutrophil cell fractions than did patients with COVID-19 only. Patients with IAPA or CAPA had downregulated IFNγ signalling compared with patients with influenza only or COVID-19 only, respectively. The concentrations of several fibrosis-related growth factors were significantly elevated in the bronchoalveolar lavage fluid from patients with IAPA versus influenza only and from patients with CAPA versus COVID-19 only. In one patient with CAPA, we visualised an active or very recent SARS-CoV-2 infection disrupting the epithelial barrier, facilitating tissue-invasive aspergillosis. INTERPRETATION: Our results reveal a three-level breach in antifungal immunity in IAPA and CAPA, affecting the integrity of the epithelial barrier, the capacity to phagocytise and kill Aspergillus spores, and the ability to destroy Aspergillus hyphae, which is mainly mediated by neutrophils. The potential of adjuvant IFNγ in the treatment of IAPA and CAPA should be investigated. FUNDING: Research Foundation Flanders, Coronafonds, the Max Planck Society, the Fundação para a Ciência e a Tecnologia, the European Regional Development Fund, "la Caixa" Foundation, and Horizon 2020.


Assuntos
Aspergilose , COVID-19 , Influenza Humana , Aspergilose Pulmonar Invasiva , Aspergilose Pulmonar , Humanos , COVID-19/complicações , Influenza Humana/complicações , Influenza Humana/tratamento farmacológico , SARS-CoV-2 , Antifúngicos/uso terapêutico , Estudos Retrospectivos , RNA Viral , Aspergilose Pulmonar/complicações , Pulmão/patologia , Imunidade Inata , Aspergilose Pulmonar Invasiva/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...